Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.
نویسندگان
چکیده
Anaerobic glucose oxidation was coupled to xylose reduction in a nonfermentative Escherichia coli strain expressing NADPH-dependent xylose reductase. Xylitol production serves as the primary means of NAD(P)(+) regeneration, as glucose is converted primarily to acetate and CO(2). The membrane-bound transhydrogenase PntAB is required to achieve the maximum theoretical yield of four moles of xylitol per mole of glucose consumed.
منابع مشابه
Succinic acid production from xylose mother liquor by recombinant Escherichia coli strain
Succinic acid (1,4-butanedioic acid) is identified as one of important building-block chemicals. Xylose mother liquor is an abundant industrial residue in xylitol biorefining industry. In this study, xylose mother liquor was utilized to produce succinic acid by recombinant Escherichia coli strain SD121, and the response surface methodology was used to optimize the fermentation media. The optima...
متن کاملMetabolic engineering for improved fermentation of pentoses by yeasts
The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) red...
متن کاملIn silico profiling of cell growth and succinate production in Escherichia coli NZN111
BACKGROUND Succinic acid is a valuable product due to its wide-ranging utilities. To improve succinate production and reduce by-products formation, Escherichia coli NZN111 was constructed by insertional inactivation of lactate dehydrogenase (LDH) and pyruvate formate lyase (PFL) encoded by the genes ldhA and pflB, respectively. However, this double-deletion mutant is incapable of anaerobically ...
متن کاملComparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains
BACKGROUND Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisat...
متن کاملAerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob
BACKGROUND For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 77 2 شماره
صفحات -
تاریخ انتشار 2011